If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 2x3 + -8x2 + -24x = 2x(ax + b)(cx + d) Reorder the terms: -24x + -8x2 + 2x3 = 2x(ax + b)(cx + d) Multiply (ax + b) * (cx + d) -24x + -8x2 + 2x3 = 2x(ax(cx + d) + b(cx + d)) -24x + -8x2 + 2x3 = 2x((cx * ax + d * ax) + b(cx + d)) -24x + -8x2 + 2x3 = 2x((acx2 + adx) + b(cx + d)) -24x + -8x2 + 2x3 = 2x(acx2 + adx + (cx * b + d * b)) -24x + -8x2 + 2x3 = 2x(acx2 + adx + (bcx + bd)) -24x + -8x2 + 2x3 = 2x(acx2 + adx + bcx + bd) -24x + -8x2 + 2x3 = (acx2 * 2x + adx * 2x + bcx * 2x + bd * 2x) -24x + -8x2 + 2x3 = (2acx3 + 2adx2 + 2bcx2 + 2bdx) Solving -24x + -8x2 + 2x3 = 2acx3 + 2adx2 + 2bcx2 + 2bdx Solving for variable 'x'. Reorder the terms: -2acx3 + -2adx2 + -2bcx2 + -2bdx + -24x + -8x2 + 2x3 = 2acx3 + 2adx2 + 2bcx2 + 2bdx + -2acx3 + -2adx2 + -2bcx2 + -2bdx Reorder the terms: -2acx3 + -2adx2 + -2bcx2 + -2bdx + -24x + -8x2 + 2x3 = 2acx3 + -2acx3 + 2adx2 + -2adx2 + 2bcx2 + -2bcx2 + 2bdx + -2bdx Combine like terms: 2acx3 + -2acx3 = 0 -2acx3 + -2adx2 + -2bcx2 + -2bdx + -24x + -8x2 + 2x3 = 0 + 2adx2 + -2adx2 + 2bcx2 + -2bcx2 + 2bdx + -2bdx -2acx3 + -2adx2 + -2bcx2 + -2bdx + -24x + -8x2 + 2x3 = 2adx2 + -2adx2 + 2bcx2 + -2bcx2 + 2bdx + -2bdx Combine like terms: 2adx2 + -2adx2 = 0 -2acx3 + -2adx2 + -2bcx2 + -2bdx + -24x + -8x2 + 2x3 = 0 + 2bcx2 + -2bcx2 + 2bdx + -2bdx -2acx3 + -2adx2 + -2bcx2 + -2bdx + -24x + -8x2 + 2x3 = 2bcx2 + -2bcx2 + 2bdx + -2bdx Combine like terms: 2bcx2 + -2bcx2 = 0 -2acx3 + -2adx2 + -2bcx2 + -2bdx + -24x + -8x2 + 2x3 = 0 + 2bdx + -2bdx -2acx3 + -2adx2 + -2bcx2 + -2bdx + -24x + -8x2 + 2x3 = 2bdx + -2bdx Combine like terms: 2bdx + -2bdx = 0 -2acx3 + -2adx2 + -2bcx2 + -2bdx + -24x + -8x2 + 2x3 = 0 Factor out the Greatest Common Factor (GCF), '2x'. 2x(-1acx2 + -1adx + -1bcx + -1bd + -12 + -4x + x2) = 0 Ignore the factor 2.Subproblem 1
Set the factor 'x' equal to zero and attempt to solve: Simplifying x = 0 Solving x = 0 Move all terms containing x to the left, all other terms to the right. Simplifying x = 0Subproblem 2
Set the factor '(-1acx2 + -1adx + -1bcx + -1bd + -12 + -4x + x2)' equal to zero and attempt to solve: Simplifying -1acx2 + -1adx + -1bcx + -1bd + -12 + -4x + x2 = 0 Reorder the terms: -12 + -1acx2 + -1adx + -1bcx + -1bd + -4x + x2 = 0 Solving -12 + -1acx2 + -1adx + -1bcx + -1bd + -4x + x2 = 0 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.Solution
x = {0}
| 10x+12x=264 | | 11d+9d-2=5d+29 | | 2x^3-6x^2-4x+12=0 | | 5x^2=6+8x | | 6(-5r)=5r-3 | | -6(-5r)=5r-3 | | x+2x^2+3x^3=0 | | 5b-1.50=3b | | -6(2p-2)=-7p+37 | | -7(-3x+1)=-39+5x | | (8x^3)^(1/3)-2X | | -15+x=5(6x-3) | | m^4+6m^2-7=0 | | x*3+27+(x+3)(x-9)=0 | | (x+3)(x^2+2x)=0 | | (d-5)(d+5)=0 | | 6+5=210 | | -5-7k=-6(7k-5) | | .5t=.5+.4t | | 6-12x-8=-22 | | -8(7-x)+7x=-x-24 | | [(n/3)x7]-6=36 | | ax=b-x | | [n/ | | 7(x+2)-6=5x+2(3+x) | | 10-3/4z=10 | | 7+8n=2n+7 | | -36+6n=3(1+8n)-5n | | -3k-(-18)=27 | | -3k-(-18)=3 | | 9(x+8)-3=69 | | 2x-5/3=x-2/2 |